Fast proton spectroscopic imaging using steady-state free precession methods.

نویسندگان

  • Wolfgang Dreher
  • Christian Geppert
  • Matthias Althaus
  • Dieter Leibfritz
چکیده

Various pulse sequences for fast proton spectroscopic imaging (SI) using the steady-state free precession (SSFP) condition are proposed. The sequences use either only the FID-like signal S(1), only the echo-like signal S(2), or both signals in separate but adjacent acquisition windows. As in SSFP imaging, S(1) and S(2) are separated by spoiler gradients. RF excitation is performed by slice-selective or chemical shift-selective pulses. The signals are detected in absence of a B(0) gradient. Spatial localization is achieved by phase-encoding gradients which are applied prior to and rewound after each signal acquisition. Measurements with 2D or 3D spatial resolution were performed at 4.7 T on phantoms and healthy rat brain in vivo allowing the detection of uncoupled and J-coupled spins. The main advantages of SSFP based SI are the short minimum total measurement time (T(min)) and the high signal-to-noise ratio per unit measurement time (SNR(t)). The methods are of particular interest at higher magnetic field strength B(0), as TR can be reduced with increasing B(0) leading to a reduced T(min) and an increased SNR(t). Drawbacks consist of the limited spectral resolution, particularly at lower B(0), and the dependence of the signal intensities on T(1) and T(2). Further improvements are discussed including optimized data processing and signal detection under oscillating B(0) gradients leading to a further reduction in T(min).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison the Accuracy of Fetal Brain Extraction from T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR Image with T2-True Fast Imaging with Steady State Free Precession (TRUFI) MR Image by Level Set Algorithm

Background Access to appropriate images of fetal brain can greatly assist to diagnose of probable abnormalities. The aim of this study was to compare the suitability of T2-True Fast Imaging with Steady State Free Precession (T2-TRUFI), and T2-Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (T2- HASTE( magnetic resonance imaging (MRI) to extract the fetal brain using the level set algorithm...

متن کامل

Visibility of epidermoid tumors on steady-state free precession images.

PURPOSE To determine whether steady-state free precession sequences improve the MR visibility of epidermoid tumors in comparison with spin-echo images. METHODS Patients were four women and three men with epidermoid tumors in the subarachnoid spaces. MR was performed with a 1.5-T superconductive unit. For steady-state free precession imaging, three-dimensional Fourier transform fast imaging wi...

متن کامل

Fast frequency mapping with balanced SSFP: theory and application to proton-resonance frequency shift thermometry.

A method is presented for the rapid acquisition of frequency maps based on multiecho balanced steady-state free precession (balanced SSFP, fast imaging with steady precession (True FISP), fast imaging employing steady-state excitation (FIESTA), or balanced fast field echo (FFE)). This technique was applied to measure temperature changes within a gel phantom based on the temperature-sensitive wa...

متن کامل

Spoiled & Balanced Gradient Echo Methods

Imaging with spoiled, balanced or nonbalanced gradient echo (GRE) refers to a class of fast imaging sequences that use a dynamic equilibrium or steady state signal for imaging. As originally introduced in 1958 by Carr (1) for NMR spectroscopy, a dynamic equilibrium or steadystate can be established by a train of radio-frequency (RF) excitation pulses interleaved by periods of ‘free precession’,...

متن کامل

Diffusion-prepared fast imaging with steady-state free precession (DP-FISP): a rapid diffusion MRI technique at 7 T.

Diffusion MRI is a useful imaging technique with many clinical applications. Many diffusion MRI studies have utilized echo-planar imaging (EPI) acquisition techniques. In this study, we have developed a rapid diffusion-prepared fast imaging with steady-state free precession MRI acquisition for a preclinical 7T scanner providing diffusion-weighted images in less than 500 ms and diffusion tensor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 50 3  شماره 

صفحات  -

تاریخ انتشار 2003